|Table of Contents|

Synthesis and Thermal Conductivity of Montmorillonite/Graphene/Poly(vinyl alcohol)Composite Films(PDF)

Journal of Xiamen University(Natural Science)[ISSN:0438-0479/CN:35-1070/N]

Issue:
2017 04
Page:
474-480
Research Field:
Research Articles
Publishing date:
2017-07-26

Info

Title:
Synthesis and Thermal Conductivity of Montmorillonite/Graphene/Poly(vinyl alcohol)Composite Films
Article ID:
0438-0479(2017)04-0474-07
Author(s):
ZHU ShoujiDENG Shunliu*XIE Suyuan
State Key Laboratory of Physical Chemistry of Solid Surfaces,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
Keywords:
graphene poly(vinyl alcohol)(PVA) montmorillonite(MMT) composite films thermal conductivity
CLC number:
O 482.2
DOI:
10.6043/j.issn.0438-0479.201702027
Document code:

A
Abstract:
In this paper,graphene oxide(GO)and exfoliated montmorillonite(MMT)hybrid(MMT/GO)were used as a dual filler to prepare MMT/graphene/poly(vinyl alcohol)(MMT/rGO/PVA)nanocomposites via solution blending.Our results show that GO prepared at -40 ℃ exhibits less defects,suggesting higher thermal conductivity when filled with polymer composites.The presence of exfoliated MMT sheets greatly prevents the aggregation of graphene sheets because of the hydrogen-bond interaction and crosslinking effects(sodium ions serve as "crosslinkers")between GO and MMT sheets.Meanwhile,the hydrogen bonds between the PVA matrix and the MMT/GO dual filler improve their dispersion and their interfacial interaction,resulting in the significant decrease in interfacial thermal resistance.The effects of the ratio of MMT to GO and the filling percentage of the dual filler on the thermal conductivity of MMT/rGO/PVA nanocomposites were investigated.The thermal conductivity of MMT/rGO/PVA nanocomposites with 12% filling of MMT/GO(2:1,by mass )dual filler is 66.4 W/(m·K),which is 132 times greater than that of pure PVA film.

References:

[1] BOLOTIN K I,SIKES K J,JIANG Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Commun,2008,146(9/10):351-355.
[2] ALLEN M J,TUNG V C,KANER R B.Honeycomb carbon:a review of graphene[J].Chem Rev,2010,110(1):132-145.
[3] LEE C,WEI X D,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
[4] BALANDIN A A,GHOSH S,BAO W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Lett,2008,8(3):902-907.
[5] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[6] SONG S H,PARK K H,KIM B H,et al.Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J].Adv Mater,2013,25(5):732-737.
[7] GANGULI S,ROY A K,ANDERSON D P.Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites[J].Carbon,2008,46(5):806-817.
[8] VECA L M,MEZIANI M J,WANG W,et al.Carbon nanosheets for polymeric nanocomposites with high thermal conductivity[J].Adv Mater,2009,21(20):2088-2092.
[9] 董丽娜,周文英,睢雪珍,等.导热石墨烯/聚合物纳米复合材料研究进展[J].现代塑料加工应用,2015,27(4):61-63.
[10] KUILLA T,BHADRA S,YAO D H,et al.Recent advances in graphene based polymer composites[J].Prog Polym Sci,2010,35(11):1350-1375.
[11] ALHWAIGE A A,HERBERT M M,ALHASSAN S M,et al.Laponite/multigraphene hybrid-reinforced poly(vinyl alcohol)aerogels[J].Polymer,2016,91:180-186.
[12] 韩哓芳,齐栋栋,张玲,等.一步法制备蒙脱土-石墨烯协同增强聚乙烯醇复合材料[J].高分子学报,2014(2):218-225.
[13] YU A P,RAMESH P,ITKIS M E,et al.Graphite nanoplatelet-epoxy composite thermal interface materials[J].J Phys Chem C,2007,111(21):7565-7569.
[14] 王湘,张晓红,乔金樑.石墨烯及其聚合物复合材料[J].高分子通报,2012(3):38-44.
[15] WANG Y,ZHAN H F,XIANG Y,et al.Effect of covalent functionalization on thermal transport across graphene-polymer interfaces[J].J Phys Chem C,2015,119(22):12731-12738.
[16] LUO F B,WU K,GUO H L,et al.Simultaneous reduction and surface functionalization of graphene oxide for enhancing flame retardancy and thermal conductivity of mesogenic epoxy composites[J].Polym Int,2017,66(1):98-107.
[17] 刘跃文,邓顺柳,谢素原,等.氧化石墨烯的还原和烷基化及其储能性能研究[J].厦门大学学报(自然科学版),2014,53(5):674-681.
[18] COLEMAN J N.Liquid exfoliation of defect-free graphene[J].Acc Chem Res,2013,46(1):14-22.
[19] 刘红宇,郑英丽,彭淑鸽,等.PVA/石墨烯复合材料研究进展[J].化工新型材料,2014,42(11):1-3.
[20] HUMMERS W S,OFFEMAN R E.Preparation of graphitic oxide[J].J Am Chem Soc,1958,80(6):1339.
[21] CAI W W,PINER R D,STADERMANN F J,et al.Synthesis and solid-state NMR structural characterization of(13)C-labeled graphite oxide[J].Science,2008,321(5897):1815-1817.
[22] 程晨,叶仲斌,周村.改进Hummers法合成氧化石墨及机理探讨[J].广东化工,2016(6):11-12,10.
[23] 傅玲,刘洪波,邹艳红,等.Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J].炭素,2005(4):10-14.
[24] ZHANG C,TJIU W W,FAN W,et al.Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly[J].J Mater Chem,2011,21(44):18011-18017.

Memo

Memo:
收稿日期:2017-02-17 录用日期:2017-02-27
基金项目:国家自然科学基金(21571151,U1205111)
*通信作者:sldeng@xmu.edu.cn
Last Update: 1900-01-01